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Excitation of large-scale inertial waves in a rotating inhomogeneous turbulence
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A mechanism of excitation of the large-scale inertial waves in a rotating inhomogeneous turbulence due to
an excitation of a large-scale instability is found. This instability is caused by a combined effect of the
inhomogeneity of the turbulence and the uniform mean rotation. The source of the large-scale instability is the
energy of the small-scale turbulence. We determined the range of parameters at which the large-scale instability
occurs, the growth rate of the instability, and the frequency of the generated large-scale inertial waves.
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[. INTRODUCTION was shown that the divergence of the Reynolds stresses can
generate an organized mean circulation was described in
[11].

There is a certain similarity between mean rotation and a
mean velocity shear. Generation of a mean vorticity in a

i > Ronhelical homogeneous incompressible turbulent flow with
et9 and weather predictionsee, e.g.[1-3]). Inertial waves imposed mean velocity shear due to an excitation of a

arise in rotating flows and are observed in the atmosphere ‘g;ge—scale instability was studied [i88]. This instability is
Fhe Earth 'and in laboratory rotating flows. In turpulent rotat-.5sed by a combined effect of the large-scale shear motions
ing flows inertial waves are damped due to a high turbuleralgskew_inducedn deflection of equilibrium mean vorticity
viscosity. Thus, excitation of coherent and undamped inertiagnd “Reynolds stress-induced” generation of perturbations of
waves by turbulence seems not to be effective. Howevethe mean vorticity. This instability and the dynamics of the
large-scale inertial waves are observed in turbulent rotatingnean vorticity are associated with Prandtl's turbulent sec-
flows. A mechanism of excitation of the large-scale coherenbndary flows(see, e.g[19-27). However, a turbulence with
inertial waves in turbulence is not well understood. an imposed mean velocity shear and a uniformly rotating
Inertial waves are related to generation of large-scale vorturbulence are different. In particular, the mean vorticity is
ticity. Generation of a large-scale vorticity in a helical turbu- generated by a homogeneous nonhelical sheared turbulence
lence due to hydrodynamicak effect was suggested in [18]. On the other hand, the mean vorticity cannot be gener-

[4-8]. This effect is associated with theV term in the ated by a homogeneous uniformly rotating nonhelical turbu-
) lence (see below. The main difference between these two

equation for the mean vorticity, whel&/ are the perturba-  f5,ys s that the mean velocity shear produces work in a
tions of the mean vorticity and is determined by the hy- ,rpylent flow, while a uniform rotation does not produce
drodynamical helicity of turbulent flow. A nonzero hydrody- \york in a homogeneous turbulent flow.
namical helicity is caused, e.g., by a combined effect of an  There are other interesting problems related with the in-
unlfo_rm rotap_on gnd inhomogeneity of turbulen@z fluid ertial waves including, e.g., the effect of inertial waves on
density stratification o ~ the onset of convection and on the turbulence dynamics. In
Formation of large-scale vortices in a turbulent rotatingpayticular, the onset of convection in the form of inertial
f!ows was studied experimente}lly and in numerical simulayyayves in a rotating fluid sphere were studied26]. On the
tions (see, e.g.[9-15]). Formation of large-scale coherent gher hand, the modification of turbulence dynamics by ro-
structures(e.g., large-scale cyclonic and anticyclonic vorti- yation is due to the presence of small-scale inertial waves in
ce9 in a small-scale turbulence is one of the charactenshqotating flows(see, e.g.[2,24-27).
features_ of rotating turbulendsee, e.g.[ll])._A number pf The main goal of this paper is to study large-scale struc-
mechanisms have been proposed to describe generation ofges formed in a rotating inhomogeneous turbulence. In par-
mean flow by a small-scale rotating turbulence—e.g., thgjcylar, we investigate the excitation of large-scale inertial
effect of angular momentum mixirid 6] and vorticity expul- \yaves. These structures are associated with a generation of a
sion [17]. The first experimental demonstration wherein it|arge-scale vorticity due to the excitation of the large-scale
instability in an uniformly rotating inhomogeneous turbu-
lence. The excitation of the mean vorticity in this system
*Electronic address: elperin@menix.bgu.ac.il; URL: http:// requires an inhomogeneity of turbulence.

The study of rotating flows is of interest for a wide range
of problems, ranging from engineerin(@.g., turbomachin-
ery) and astrophysicggalactic and accretion disk$o geo-
physics(oceans, the atmosphere of the Earth, gaseous pla

www.bgu.ac.illelperin This paper is organized as follows. In Sec. Il we formu-
"Electronic address: golubev@bgumail.bgu.ac.il lated the governing equations, the assumptions, and the pro-
*Electronic address: nat@menix.bgu.ac.il cedure of the derivation. In Sec. Ill the effective force was
SElectronic  address: gary@menix.bgu.ac.il; URL: http:// determined, which allowed us to derive the mean-field equa-

www.bgu.ac.ilfgary tions and to study the excitation of large-scale inertial waves
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in Sec. IV. The large-scale instability was investigated in W _ o _
Sec. IV analytically for a weakly inhomogeneous turbulence — =V XQ2UXQ+FU)-vV XW), (7)
and numerically for an arbitrary inhomogeneous turbulence. a

Conclusions and applications of the obtained results are dis- =T =—v.(f. O : R
cussed in Sec. V. In Appendixes A—C a detailed derivation o here F(U)=-Vj(f; =) Is the effective forcef;; =(uuy),

the effective force is performed andfi(.o) is the second moment of the velocity field in a back-

ground turbulencéwith a zero gradient of the mean veloc-
ity). Thus, the mean fields) and W represent deviations
Il. GOVERNING EQUATIONS from the equilibrium solutiotd®=0 andW®=0. This equi-

The system of equations for the evolution of the velocity!iPrium solution is a steady-state solution of E®.and(4).
v and vorticityW =V X v reads Note that the characteristic times and spatial scales of small-

scale fluctuations of velocity and vorticityandw are much

J VP smaller than that of the mean fieltsandW.

—+tv.V |v=- 7 +2v X Q+vAV+HFg, (D) In order to obtain a closed system of equations in the next
section we derived an equation for the effective fafEe

W

E: VXVXW+2r X Q-vV XW), (2 lll. EFFECTIVE FORCE

In this section we derive an equation for the effective

wherev is the fluid velocity withV-v=0, P is the fluid  force F. The mean velocity gradients can affect turbulence.
pressuref is an external stirring force with a zero mean The reason is that additional essentially nonisotropic velocity
value, Q is a constant angular velocity, andis the kine-  fjyctyations can be generated by tangling of the mean-
matic viscosity. Equatiof2) follows from the Navier-Stokes  ye|ocity gradients with the Kolmogorov-type turbulence. The
equation(1). We use a mean-field approach whereby the vesoyrce of energy of this “tangling turbulence” is the energy
locity, pressure, and vorticity are separated into the mean angk the Kolmogorov turbulence. The tangling turbulence was
fluctuating partsy=U+u, P=P+p, andW =W +w, and the introduced by Wheeloh28] and Batcheloet al. [29] for a

fluctuating parts have zero mean values;(v), P=(P), and  Passive scalar and by Golitsy80] and Moffatt[31] for a

_ . passive vectofmagnetic field. Anisotropic fluctuations of a
W=(W). Averaging Eqs.(1) and (2) over an ensemble of passive scalafe.g., the number density of particles or tem-

fluctuations we obtain the equations for the mean velddity perature are generated by tangling of gradients of the mean

and mean vorticityWV: passive scalar field with a random velocity field. Similarly,
anisotropic magnetic fluctuations are excited by tangling of

[ 0 — }_ vp — . the mean magnetic field with the velocity fluctuations. The
—+U-V|U=—-—+2UXQ+F+rvAU, (3 Reynolds stress in a turbulent flow with mean velocity gra-
a p dients is another example of a tangling turbulence. Indeed,

they are strongly anisotropic in the presence of mean veloc-
W L - ity gradients and have a steeper spectrigrh™”’®) than a
— =V XUXW+2UXQ+UuxXw)-rvV XW), Kolmogorov turbulencésee, e.g.[32-36). The anisotropic
ot velocity fluctuations of tangling turbulence were studied first
(4) by Lumley[32].
To derive an equation for the effective force we use
whereF;=-V (u;u;). Note that the effect of turbulence on the equation for fluctuationsi(t,r) which is obtained by sub-

mean vorticity is determined by the Reynolds stressgg)  tracting Eq.(3) for the mean field from Eq(1) for the total

because field:
au — — Vp
1 —=-(U-V)u-(u- V)U-—+2u X Q@ +Fg+UN,
U X w); =-Vi{uu) + EVKUZ)- (5 ot ( u=(u-v) p N st

(8

Consider a steady-state solution of E(®.and(4) in the
form U®=0 andW®=0. In order to study a stability of this Where
Equilibrium we consider~perturbations of the mean velocity UN=((u- V)u)-(u- V)u+rAu. (9)
U and the mean vorticityV. The linearized equations for the
small perturbations of the mean velocity and the mean vor
ticity are given by

We consider a turbulent flow with large Reynolds numbers
(Re=lgug/ v>1), whereu, is the characteristic velocity in
the maximum scalé, of turbulent motions. We assume that

~ ~ there is a separation of scales; i.e., the maximum scale of
aJ_ VP +20 x Q + FU) + vAU, (6)  turbulent motiond, is much smaller than the characteristic
at p scale of inhomogeneities of the mean fields. Using @j.

036302-2



EXCITATION OF LARGE-SCALE INERTIAL WAVES IN... PHYSICAL REVIEW E 71, 036302(2005

we derived an equation for the second moment of the turbulems of turbulent transpotsee, e.9.,37,40—43). One of the
lent velocity field  fj(k,R)= [{u(k+K/2)u;(-k simplest procedures, which allows us to express the devia-

+K /2))expliK -R)dK : tions of the terms with the third moment§”-f™ in k
space in terms of that for the second momefntsf..o), reads
o Gumolmn® By (19 o~ evo_ T =
(k)

(see Appendix A wheregijmn:Iijmn(D)+Nijmn(Q),
where (k) is the scale-dependent correlation time of the tur-
Limn(U) = [2kiq5mp5jn + 2Kig SmSon = SmSiqOnp = GiqinOmp bulent velocity field. Here we assumed that the tinfle) is
independent of the mean velocity gradierffser a weak
9 - mean-velocity shearWe considered also the case of a slow
+ 8minkg | VpUg (11)  rotation rate. In this case a modification of the correlation
kK . s
P time of fully developed turbulence by slow rotation is small.
This allows us to suggest that E(L5) is valid for a slow
Nijmn(ﬂ) = Zqupq(Simp‘Snj + Sjmpﬁni)’ (12) rotatlon rate
andR andK correspond to the large scales, andndk to The 7 approximation is different from eddy-damped qua-

the small scale¢see Appendix A &; is the Kronecker ten- zi_;ormal Mbarrovian(tEDQNtM) approximhation- A pfri?l(cipal
L L2 _ ) _/E _ ifference between these two approaches is as foli®es
sor, ki =kik; /", a}wnd V=0IdR, F”Sk,R)_<F,(k,R)u, [37,39). The EDQNM closures do not relax to the equilib-
X(_k'R)>+<Ui(k’R)Fg(_k’R)>’ F(k,R,H=-kx(k rium, and this procedure does not describe properly the mo-
X F(k,R))/K?, and fijN)(k,R) are the terms which are re- tions in the equilibrium state. In the EDQNM approximation,
lated with the third moments appearing due to the nonlineathere is no dynamically determined relaxation time, and no
terms. The third moments termﬁﬁ“) are defined as slightly perturbed steady state can be approa¢B&H In the
™~ AN ~N T approximation, the relaxation time for small departures
fii” (K,R) = (Pin(k)Un(k)u;(k2)) + (Ui(k) Pjn(k2)Un(K2)),  from equilibrium is determined by the random motions in the
where Uﬁ(k) is the Fourier transform o) determined by [6397%”I?ﬂg”;r?;?;:fsbgér?grtn?gdﬂ;[%%egr?gw;ed ftrﬁ;]: ?h(i:"ggtlum
EQ. (9), ky=k+K/2, kp=—k+K/2, andP;(k) = &; —k;. proximation describes the relaxation to the equilibrium state
Equation(10) is written in a frame moving with a local (the packground turbulentemore accurately than the
velocity U of the mean flow. In Eq(10) for the second EDQNM approach.
moments of the turbulent velocity field we neglected small Note that we applied the approximation(15) only to
terms~O(V?), where the terms witlW ~O(L™) contain the  study the deviations from the background turbulence which
large-scale spatial derivatives. These terms are of the ordarre caused by the spatial derivatives of the mean velocity and
of (Io/L)?, where the maximum scale of turbulent motidps  a uniform rotation. The background turbulence is assumed to
is much smaller than the vertical size of the turbulent regiorbe known. Here we use the following model for the back-

L. ground isotropic and weakly inhomogeneous turbulence:
Equation(10) for the background turbulend&ith a zero £(K) )
. . o~ _ i
gradient of the mean fluid velocity;U;=0 andQ=0) reads f9(k,R) = . P;(k) + %(kivj -k Vy) [(ud©
a9 (k,R) N0
i R (13) (16)

i (see, e.g.[44]), whereP;;(k)=5;—k;, & is the Kronecker
where the superscrigf) corresponds to the background tur- tensor, and ki=kk /K2, n(k)=2mr(k), E(K)=-dk)/dk
. . ] | | ] ]
bulence, and we assumed that the terfsdk ,R), which is Rk)=(k/k0)1‘q,]1<qj<3 s the exponent of the kinetic en-

determined by a stirring force, is independent of the mean- - for Kol
velocity gradients and of a constant mean angular veIocityggﬁZEeCtrume'g"q 5/3 for Kolmogorov spectruf and

The equation for the deviatiorfg—fi(jo) from the background

turbulence is g|ven( k))y isotropic velocity fluctuationgtangling turbulence Equa-
a(f = 19 N NO tions (14)—(16) allow us to determine the second moment
: ot I = gijmnfmn+ fI(J )~ 1zl(] , ) (14) fl](R):fflj(k ,R)dk

The mean-velocity gradierYfiD causes generation of an-

Equation(14) for the deviations of the second moments
fij—fi(.o) in k space contains the deviations of the third mo-

J . .
mentsf("'- ™% and a problem of closing the equations for

the higher moments arises. Various approximate method$€e Appendix Eiv‘(here?’(To):TO<“2>_(o)/6 and the tensorif;;
have been proposed for the solution of problems of this typ@nd S; are determined in Appendix B. The definition of the
(see, e.g.[37-39). The simplest procedure is theapproxi-  function »1” yields (u?)©(R)=64{"(R)/r,. Since we as-
mation which was widely used for study of different prob- sumed thatr, is independent oR, the spatial profile of the

1
fij(R) = P (R) = My - LIG0S; a7
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function VT) [e.g., given by Eq (26) in Sec. IV B] deter- B, B,
mines the spatial profile ¢ii?)(©. Equation(17) allows us to 0.5}
determine the effective forc@ﬁ——V-[fij(R)—fi(].O)(R)]. 0k
Fi= v (M A + ViMy) + ESA +YS), (19 0.15¢
0.1t

where A =(VI12)/12=(V4{?) /2.
Note that whem\ =const and the velocity field is incom- 0.05f
pressible, the effective forcéF does not have the term

xaW, where a describes the hydrodynamie effect. The
hydrodynamicx effect was introduced in the equation for the 00557 02 03 02 05 ar,
mean vorticity(see, e.g.[4,6,7)), similarly to thea effect in

the equation for the evolution of the mean magnetlc field Fic. 1. The rotation rate dependence of the functigt@,)
(see e.g.[45]). The reason for the absence of e/ term (solid line) and By (Q7,) (dashed ling

in F is as follows. Let us suggest the opp03|te—| e., that

FoxaW=aV xU. Since the effective forceF;=-V[f;(R) Bu(Q,2) = 1%(2)(w/8)Dg(w),

—f(o( R)], we obtain

0 ==

11(Q,2) = 12 (2)[D;(w)/2 + Dy w)],

i (R) = FiP(R) o = aeij Uy (19)
Here we used the identityV,=¢;;, V,U, and we took into 1(Q,2) = 7y(Q,2) + 20 (2)Dy(w),
account that whe =const, the hydrodynamie is constant.
Note also that in our paper we considered incompressible 70(Q,2) = X0 (2)Dy(w),

velocity field. The conditior{19) is in contradiction with the

Galilean invariance, because the Reynolds stresses in the _ 0

considered case may depend on the gradient of the mean- ml2,2) = 17(2)[Dy(@)/2 = Dy(w)].

velocity field rather than on the mean velocity itself. Whien Here w=87,(), a.= L2/vT>1 and we used Eq18). The

is not constant, the effective forc# can have the term functionsD,(w) are determined in Appendix B.

xaW. However, this effect is not in the scope of our paper In Egs.(20) and(21) we use the following dimensionless

(e.g., this case cannot be described in the framework of thearlables length is measured in unitslgftime in units of

gradient approximation L2/ v vy, the parameteA is measured in the units &f?, the

function VT (z) is measured in the units ofr and the per-

turbations of veIocnyUZ and vort|C|tyWZ are measured in

units of U and U./L, respectively. The functiong8(Q ),

Bu(Q7g), vi(Q7), vy(Q1), ml7), and ny(Q7) are
For simplicity we consider the case when the turbulenceshown in Figs. 1 and 2. All these functions shown in Figs. 1

is inhomogeneous along the rotation axis—i&zAe, & and 2 are normalized by ”(2—e.g., ¥(Q7)

IV. LARGE-SCALE INSTABILITY IN AN
INHOMOGENEOUS TURBULENCE

=Qe,. After calculating[V X (V X G)]Z from Eq. (6) and \7VZ =p(Q, z)/v(o)(z) and similarly for other functions.
from Eq. (7) we arrive at the following equations written in
nondimensional form: v :
'y U’ nU' T\w
&UZ - ~ 2 L
A? = - [G - IBUAJ_VL-lWZ-F [VTA + VTAAVZ+ VuAAJ_VZ 0.8
+nuA, VAU, (20) 0.6¢
EYVER 5 5 0.4
T (G BAA DU+ [V + AV + A IV,
0.2
(21
— 2 — 2 snenier sttt ) ) )
whereA=A, +V3, V;=dldz, % 01 02 03 04 05 Qr
G=2a.V,+ 24
G=2a.V,+ fIAV; + AV, FIG. 2. The rotation rate dependence of the functiop®))
(solid line), vy(Q7p) (dash-dotted ling n(Q79) (dashed ling and
B(Q,2) = (D) (w/8)[ Ds(w)/2 = Dg(w)], (7o) (dotted line.
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A. Weakly inhomogeneous turbulence V(TO)
1t \
Assume that functions(TO)(z) andA(z) vary slowly withz H 5
in comparison with the variations of the mean velocityz) 0.8 I
and mean vorticityV,(z). Let us seek a solution of EqR0) H ‘-‘
and (21) in the form «exp(yt—iK -R). Let us first consider 0.6/ H i
perturbations with the wave numbek€ <K?Z. SinceV-U H 5
=0, the velocity componentd,<|U, |. Thus the growth rate “ ..-';'--." b\
of the inertial waves with frequency 02l g } \ "\" |
2a.K s T
wy =~ SgNBA)—— (22) . . . . z/L
K 0 0.2 0.4 0.6 0.8 1
is given by

FIG. 3. T(tt:)e vertical profile of the turbulent wscosmqf)(z for
— _ 2 Ag=30 andv; =0.1(solid line), Ay=30 andv )=0. 3(dashed ling
Y= BT AKS ~ pr{ Qo (23 \e=12 ands=0 1 (dash-dotted line
where y=vy,tiwy, the wave numbeK is measured in the
units of L™%, and y is measured in the units of;/L2 The
maximum growth rate of the inertial wavesy,,
=[B(Qr)A/4v1(Q1y), is  attained at K=K

=|B(Q7o)A|/2v1(Q 7). For a very small rotation rate—i.€., gjong the rotation axis and consider the axisymmetric solu-
for w=8Q0rn<1—the turbulent viscosity »(Q7)=(q  fjon (i.e., there are no derivatives with respect to the polar
+3)/5 and B(Q7g) ~(32/19( 7, where the parameteris  angle ¢). The turbulence is inhomogeneous along the rota-
the exponent of the kinetic energy spectrum of the backtion axis. We use the periodic boundary conditions in zhe

ground isotropic and weakly inhomogeneous turbulenc - _ -
(e.g.,q=5/3 for Kolmogorov spectrum and this parameter irection_for Egs.(20) and (21)—ie., UZ(Z 0,)= UZ(Z

varies in the range € q< 3. Note that the inertial waves are =L.1), Uz (z=0,r)=U;(z=L,r), U;(z=0,r)=U3(z=L,r),
helical; i.e., the large-scale hydrodynam|c helicity of the mo- U”’(z 0,n= U”’(z L,r), Wz(z 0,n= Wz(z L,r), andW’(z
tions in the inertial waves i) -(V x U) = 2|U I?’K,#0. This  =0,r)= W’(z L,r), wheref’:VZf.We also use the condition
instability is caused by a combined effect of the inhomoge{] (z r=0)=U,(z,r=R)=0, whereR is the radius of the tur-
neity of the turbulence and the uniform mean rotatisae bulent region.

the first term in Eq(23)]. _ , We have chosen the vertical spatial profile of the function
Now we consider the opposite case—i.e., the perturba (z) in the form

tions with the wave numberk? >K2. SinceV-U=0, the

velocity componentd),> U, |. When K2[8(Q)A]/4a. <K, WO(z) = 1- ext{ 2A2<— _ }>2]
<K, the growth rate of perturbations with frequency L 2

the system of ordinary differential equations which is solved
numerically.
We used the cylindrical geometty,r, ¢) with the z axis

2a.K
W= SMBA) = ~2 (24) o 1- 26
1-exd-A%2)’
is given by ) b
with two values of the parametefr =0.1 and 0.3 and two
21 _ 2 values of the parameteYy=12 and 30. The vertical profile
we 2["3(970)AIK [v+(Q70) + Q7o) K. (29) of the turbulent VISCOSItyV(O)(Z) is shown in Fig. 3. The

. . maximum of turbulence intensity is located ztL/2. The
The maximum growth rate of perturbations,y,

=[B( Qo) AT/ 8 v(Q 7o)+ (@70, s attained atk=K,, form of the chosen spatial profile of the functmﬁ? (2) is

=|B(Q ) A|/ 2] y(Q70)+ Q2 7)]. This case corresponds to simple enough and universal. It allows us to vary the size of

< a2 i : _ the region occupied by turbulenéby changing the param-
&> Q) [ 4v(Q70). The large-scale hydrodynamic he eter Ay) and the difference in the level of the turbulence

licity of the flow is U-(V X U)=4K , |U,|? sgr(B) # 0. between the center and boundary of the redlmnchanging
_ the parameter/ ) i.e., it allows us to change the inhomo-
B. Numerical results geneity of the turbulence The numerical solution of Egs.

In this section we take into account the inhomogeneity of(20) and(21) WaS performed also for other spatial profiles of
the funcnonsv(o)(z) andA(Z) Consider an e|genva|ue prob the fUnCtlonVT (Z) However, the final results do not depend
lem for a system of Eqg20) and (21). We seek for a solu- strongly on the details in the spatial profile of the function
tion of Egs.(20) and(21) in the form=W¥ (z)exp(y)Jo(K , 1), VT (z) Note also that the chosen spatial profile of the func-
where Jo(x) is the Bessel function of the first kind. After tion vT (z) can mimic the distribution of turbulence in galac-
substitution of this solution into Eq§20) and(21) we obtain  tic and accretion disctsee, e.g.[46]).
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Yor———— Yo
10 % 0.004 -
i A instabillty 0.002-
----------------- I XV XL ]
L/loo 005 01 015 02 025 Q’L‘o 0.000
L 0.0021
M 1 T v T v T T T T
: _ 000 005 0.10 0.15 020 025 Qt
102 b . g Instability ©1
0 005 01 015 02 025 Q’Co 0350_-
Uy 2]
""""""""""""""""" 0.204
10° ]
H Instabllity 0.15+
1078 ' ; : : 0.10
0 005 01 015 02 025 QTO | ~—ame
0.05 4
FIG. 4. The range of parametdis/ly, Q7o) for which the large- 0.00 ——F——7——T7——T1——7 b
scale instability occurgy,>0) for (@) Ag=12, 1’'=0.1; (b) Ao 000 005 0.10 0.5 020 0.25 Qt,

=30, 1”'=0.1; (¢) Ap=30, ”'=0.3; and different values of the _
parametep: ©=0.1 (dotted ling, =0.5 (solid line), u=1 (dashed FIG. 5. The rotation ratéQ)7,) dependences dB) the growth
line), u=2 (dash-dotted ling rate y,,7p Of the large-scale instability an@) the frequencywy,

' of the generated waves due to the large-scale instabilityAfpr

The sufficient condition for the excitation of the instabil- =12, 11?=0.1, x=0.1, and different values of the parametg;
ity is v,>0. The range of parametefk/l,,Q7) for which  L/I;=50(solid line), L/1;=100(dashed ling andL/l,=500(dash-
the large-scale instability occurs is shown in Fig. 4 for dif- dotted line. Here rp=L2/vy.
ferent values of the parameters V-(l—b)(Z), and Ay. Here u
=L/L,, L is the vertical size of the whole region, ahdis a  smaller than the turbulent correlation time. The asymptotic
radius from the center of the structure at which the enéldyy formulas (22~25) are in agreement with the obtained nu-
of the radial velocity perturbations is maximum. Note thatMerical results. , ,
the maximum radia(horizonta) size R of the whole region It mustbe noted that turbulent flow with an imposed mean
is of the order of~4L,. The decrease of the parameger linear velocity shear and uniformly rotating flows are essen-
causes increase of the range of the large-scale instability. Offlly different. In particular, in a turbulent flow with an im-
the other hand, the increase of the size of the highly intensB0S€d mean linear velocity shear there are no waves similar
turbulent regior(i.e., decrease of the paramefey) results in 10 the inertial waves which exist in a uniformly rotating
the increase of the range of the instability. flows. The reason is that any shear motions have a nonzero

The rotation rate dependences of the growth rgte, of

the large-scale instability and the frequengyr, of the gen- OY‘(’)V(:Z_‘
erated waves due to the large-scale instability are shown in R
Figs. 5 and 6, whereD=L2/vfr. There is a threshold in the 0.002
rotation rate for the large-scale instabilify; 7o~ 0.025, and 0.000.
when Q>., the instability is excited. The instability ]
threshold in the parametéris L>10,,. -0.0021
Note that the characteristic tinfe-27/,) of the growth o004l 4
of perturbations of the mean fieldsandW is by five orders 0.00 0.05 0.10 0.15 0.20 0.25 Qr,
of magnitudes larger than the turbulent correlation tirge ;”‘g;l{ Pid
The period of oscillations] =27/ w,,, of inertial waves is at ’ s
least 10 times larger than the turbulent correlation tirpe 020 R
The minimum value of the period of rotatidry=27/() is at 0.15 1 .// 7\
least 20 times larger than the turbulent correlation time 0.10 . \
All spatial scales: the vertical size of the turbulent region, 0.05 /’ Temo
and the vertical size of the highly intense turbulence 0.00 ] v b
(~L/Ag) are much larger than the maximum scale of turbu- "0.00 0.05 0.10 0.15 0.20 0.25 'QTO
lent motiondly (e.g.,L/Aqis at least 10 times larger than the
maximum scale of turbulent motiorlg). This implies that FIG. 6. The rotation rat¢Qr,) dependences daf) the growth

there is indeed a separation of scales as we assumed in thge y,, of the large-scale instability an@) the frequencyw,,

derivations. Note also that the range of validity of the ob-of the generated waves due to the large-scale instabilityAfpr
tained results isq,<T for a statistically stationary back- =30, ’=0.1, x=0.1, and different values of the parametsi:

ground turbulence. In particular, we assumed that the chai-/1,=100 (solid line), L/I,=500 (dashed ling and L/l;=1000
acteristic time of evolution of the second moments is muchdash-dotted ling
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symmetric part(@U); of the gradient of the mean velocity, APPENDIX A: DERIVATION OF Eg. (10)

where(al])ij =(VjU;+V;U)/2. In addition, the difference be-  In order to derive Eq(10) we use a mean-field approach;
tween these two flows is that the mean velocity shear prok.e., a correlation function is written as follows:
duces work in a turbulent flow, while a uniform rotation does

not produce work in homogeneous turbulent flow. )
Uiy = [ (Ui(kuj(k)expi(ky - x + K, - y)]dk,dk,

V. CONCLUSIONS :ffij(k’R)eXp(ik 1k,
We studied formation of large-scale structures in a rotat-
ing inhomogeneous nonhelical turbulence. We found a
mechanism for the excitation of the large-scale inertial waves
which is associated with a generation of a large-scale vortic-
ity due to the excitation of the large-scale instability in a
uniformly rotating inhomogeneous turbulence. It was shownsee, e.g.[47,48)), whereR andK correspond to the large
that the mean vorticity cannot be generated by a homogescales and andk to the small scales—i.eR=(x+y)/2, r
neous uniformly rotating nonhelical turbulence. The excita=x-y, K =k,;+k,, andk=(k,;-k,)/2. This implies that we
tion of the mean vorticity in this flow requires also an inho- assumed that there exists a separation of scales; i.e., the
mogeneity of turbulence. Therefore, the large-scalémaximum scale of turbulent motiogis much smaller then

instability is caused by a combined effect of the inhomoge+the characteristic scale of inhomogeneities of the mean
neity of the turbulence and the uniform mean rotation. Theg|(ds.

source of the large-scale instability is the energy of the Now we calculate
small-scale turbulence. The rotation and inhomogeneity of

f”(k,R) :f <Ui(k + K/Z)UJ(_ k + K/2)>eX[i|K . R)dK

turbulence provide a mechanism for transport of energy from o (Ky,K») (ko)
turbulence to large-scale motions. We determined the range —'Jﬁ = \ Pin(k2) r:yt “uj(ky)

of parameters at which the large-scale instability occurs.

Some of the results obtained in this study—e.g., the ex- Aup(ko)
pression for the effective force in a homogeneous + <“i(k1)Pjn(k2) ot > (A1)
turbulence—are in compliance with the previous studies of
rotating turbulenc¢49] [see Appendix B, Eq(B13)]. Itis  where we multiplied equation of motiof8) rewritten in k
plausible to suggest that the results of recent experimentgpace by:ij(k)zélj_kij in order to exclude the pressure term
[50] can be explained by the large-scale instability discussegtom the equation of motions; is the Kronecker tensor, and
in this paper. Direct quantitative comparison of our theoretkij:kikj/kZ_ This yields the equation fof;;(k,R) [see Eq.

ical predictions with the experimental results reportefb®  (10)]. For the derivation of Eq(10) we used the equation
is not feasible. The reason is that turbulent flow in the ex-

perimental setup used [50] is inhomogeneous in radial and 1 -
axial directions, and the radial inhomogeneity is stronger ikiffi,(k—EQ,K —Q)Up(Q)exp(iK -R)dK dQ
than the axial one. In our study we investigated the large-

scale instability in the case of the axial inhomogeneity of 1~ 1 ~ 0 _~ afy;
turbulence and considered only a simple physical mecha- :_Eupvifij + EfiJViUp_Z(VsUp) Vi ke

nisms to describe the initial stage of mean-vorticity genera- _

tion in a rotating inhomogeneous turbulence. However, the +'_<‘7_fil>(v v ) (A2)
main mechanism of the generation of the secondary flow in 4\ okg) SR

the experiment$50] is associated with the Reynolds stress-
induced generation of the mean vorticity by a rotating inho-To derive Eq(A2) we multiply the equatiolV -u=0, written

mogeneous turbulence that was analyzed in our studyy k space fori(k,-Q), by uj(kz)Dp(Q)exp(iK-R), and in-

Clearly, the simple model considered in our investigation Calegrate overkK and Q and average over the ensemble of
only mimic the flow observed in the experimef&0], and velocity fluctuations. Herek,=k+K /2 and k,=-k+K /2.
comprehensive theoretical and numerical studies are requireghs yields

for their quantitative description.

1 1 1
f |<k| + _Ki - Qi><ui<k +-K - Q)UJ<_ k+ _K>>
ACKNOWLEDGMENTS 2 2 2

This work was partially supported by The German-Israel X Up(Q)expliK - R)dKdQ =0. (A3)

Project CooperatiofDIP) administered by the Federal Min- ) . ~ ~

istry of Education and Resear¢BMBF) and by the Israel Next, we introduce new variable&; =k +K/2-Q, k,=—k
Science Foundation governed by the Israeli Academy of Sci+K /2, k=(k;-k,)/2=k-Q/2, andK =k;+k,=K -Q. This
ence. allows us to rewrite Eq(A3) in the form

036302-7



ELPERINet al.

. 1 1 ~
f |<ki + EKi - Qi)fij<k - EQ,K - Q)Up(Q)
X exp(iK -R)dK dQ =0. (A4)
Since|Q| < k|, we can use the Taylor series expansion
10f;(k,K -
fij(k-Q/2,K-Q) =f;(k,K -Q) - EL%QS
+0(Q?).

We also use the following identities:

(A5)

[f;(k, RIUL(R) Ik = f fi;(k,K - QU,(Q)dQ,

VLfi(k, R)ULR)] = f iK Lf;; (k, R)UL(R) Ik

X expliK -R)dK, (AB)

where[fij(k,R)Up(R)]K denotes a Fourier transformation.

Therefore, Eqs(A4)—(A6) yield Eq. (A2).

APPENDIX B: THE REYNOLDS STRESSES

In this appendix we derive equation for the Reynolds
stresses using Eq14). We assume that the characteristic
time of variation of the second momefj(k,R) is substan-
tially larger than the correlation timek) for all turbulence

scales. Thus in a steady state Etd) reads

[L(Q) - #KI(U)](F - F9) = dINQ) +1(0)]F,
(B1)

where we used Eq15). Hereafter we use the following no-

tation: =1;(k,R), {NV=1k,R), {O=1P(k,R), I([D)f
= lijmn(D)fron(k,R) - and N(€)F =Njin(2)frmgk,R), and
L(Q) =Lijmn(@) = 88— TNjmn(€2).  Multiplying  Eq.
(B1) by the inverse operatdr(Q) yields
[E- AL IO -79) =-[E-LY@)
- AL QI O)IF,
(B2)

whereE= dmdjn, and we used an identity

E-L Q) =- AL YQ)NQ).
The latter identity follows from the definitioh ()L (Q)
=E. The inverse operatd}‘l(ﬂ) is given by

. _ 1
L) = Lin(€2) = S[B18imdjn + Bokijmn

+ B3('9ipm§jn + sjpn&lm)kp + B4(§imkjn + ‘Sjnkim)
+ B58ipm8janpq + B6(8ipmkjpn + 8jpnkipm)]y (B3)

where B;=1+x(2¢), B,=By+2-4x(¢)), B3=2yx(2¢)), B,

PHYSICAL REVIEW E 71, 036302(2005

=2x() By, Bs=2-B;, Bg=2¢{x()—x(24)], x(x)=1/(1
+x2), and =27(k)(k - Q)/k.

Multiplying Eq. (B2) by the operatoE+r(k)L"1(€2)1(U)
yields the second momerﬁtsfij(k,R):

f=[L(Q) + AL Y(Q)IQL YO, (B4

where we neglected terms which are of the order of
O(|VUP). SinceLjp,,(2)Pp(k)=P;(k), Eq. (B4) reads

f~ 1O+ (WL LYQ)I(U)FO. (B5)

The first term in Eq.(B5) describes the background turbu-
lence. The second term in E¢B5) determines effects of
both rotation and mean gradients of the velocity perturba-
tions on the turbulence. The integrationkirspace yields the
second moment; (R)=[f;;(k,R)dk which is determined by

Eq. (17), where we used the notatidre f;; =f; ~f{?, and the
tensorsM;; and§; are given by

Mj; = D1()(30);j + Dy(0)Q; + Da(@) Tj; + Dy(@)(@ - V)

X(&- U)oy, (B6)
Sj = Ds(@)Kjj + Dg(w)Rjj, (B7)
where
Qi =@V +&;V)(@-U)+ (& V)(@&U; + Uy,
(B8)

Ty =(@X V)@ x )+ (@Xx V)(@xU), (B9

Kij = (”:’n[simn((?o)mj + 8jmn(ao)mi], (B10)

R =[@(& X V), +a(éx V)](&-U)
+(é- V)[ay(@ X U);+ & (@ % V)], (BLY)
(U =(V,U;+V,U))/2, 0=y, =/Q, and
D1(w) = {2[AP(@) = AP(0) + (g +2)C{P(0) + C(w)]
+ AP (w)}4,

Dy(w) = [2C(w) - A (w)1/8,

Ds(w) = - (/8)AP(w), Dy(w)=(L/HCH(w),

Ds(w) = 2[4CP(w) + CP(w) + 7CP(w)],

Dg(w) = CP(w) + 2CP(w),

w=87y(). The functionsAE?(w) and Cﬁ?(w) are determined
in Appendix C. Equation18) for the effective forceF=
-V;fij(R) can be rewritten in the form
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F=F"+ (v“’ My + ¢ znsj) (B12) Ay(a) = 2—77[(a+ 2N _ 1},
a va
where 1\0=7ud©/6=12/67,, A=(VI2)/12=(Vii¥)/?, _
and the effective forc@ffH) in a homogeneous turbulence Kz(a) :_Z—Wl(aJ, 3)—arct61’_ma) _3],
reads a Ja

~ 1 ~ R N~
FH= V(TO){ {EDl - Da]AUi + D& V)2d-U) zarctani\ a) 5a 1]

+(Dy+ Dy)[(@- V) + & A(d - D)]} arctaﬂi\ a) S5a ]
— - =-35],

Chla)= l(3a +30a+35)
Va 3

+ é@n[oe(a, V)X Vi(@-U) = (& W),

2

arctani\ a) 13a 5}
—n 3 )

+(&- V)(@xU)]-= DSA(wa)] Ci@ = -—l(a +6a+5)

1 _ In the case ofi<1 these functions are given by
+—120DsVi(é - W) + 1%(D, - Dy)Vi(& - V) _ _
2 Ay (a) ~ (4m/3)[1 - (1/5)a], Ay(a) ~ - (8n/15)a,

X(@-U), (B13)

Cy(a) ~ (4m/15)[1 - (1 Cy(a) ~ (32m/315)a2
where we used the identity Ci(8) ~ (4n/15][1 - (1/7a],  Cy(a) ~ (32m/319a,

Eijk€Imn = 61 6m%n* GinGjl Skm+ GmSjnd ~ SinOjm S Cs(a) ~ - (8m/109a.
= 81 6jnSkm~ im0 Skn- In the case of>1 these functions are given by
Equation (B13) for the effective force}fH) in a homoge- Kl(a) — ﬂz/\,,g, Xz(a) o 7#/\/5,

neous turbulence coincides in the form with that obtained in

[49] using symmetry arguments. However, the symmetry ar- — I — —
guments cannot allow to determine the coefficients in Eq. Ci(a) ~ m’/4Va-4ni3a, Cyla) ~3m7/4va,
(B13).

~ [
~ - ‘a+
APPENDIX C: THE IDENTITIES USED FOR THE Cy@) 14\ +8mi3a.

INTEGRATION IN k SPACE Now we calculate the functions
To integrate over the angles knspace we used the fol- ® o (¢
lowing identities: Al (o) = (6lmaP™) | yPA(y9)dy,
0

kysing — -
3@ = f o &l T g dede = Ay + Ay, (CD) .
aco CP(w) = (6/mw™*?) f yPC(y?)dy.

0

sin @ —
IJmn(a) f —Imn > Gode = C1(8j8mn* Smbin + GnSim) The integration yields

1+acog 0
— arctarfw) 1 1
+ C20‘)ijmn + Cs(ﬁ'wmn*' Om®jn + Gin®@jm + Sjmwin A(ll)(w) = 12[T<1 B E) + ;[1 ~In(1+ wz)]] '
+ 5nw|m + 5mn“’|1) (C2

no AgD(w):—lz[%m“’)(l—%) +é[3—2 |n(1+w2)]]
|Jmn(a) f |mn 2 6de
(1+acos 6)

t 6 1
( Tgomsing ) C(lﬂ(w):M(g,__z__A)
~ \db b+acos’-0 e bt @ oo
_ J— +i(1_7+i_4|n(1+ 2))
= Jijmn(@) + &~ Jjmn(a), (C3 w?\ 3 @
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@ = M( i>_l 6 @ ~§( _3 z) @,y _16 5
A (w) 6{ o 1+ e w2+ w3S(w) , A (w) 3 1 = ) A (w) T

arctarfw) 1 13 1 4
C(f)(w)=(3/2){—(l-—4)—p+—4+—38(w)]. 4 1

w w w w w C(ll)(w) - g 1 _ﬂwz ' C(Zl)(w) -~ O(w4),
CP(w) = AP (w) - TAP (w) + 35CP (w),
(p) N _gep) 4 8 3

CP(w) = AP (w) - 5CP(w), CP(w) ~ - 3—5(02, C'?(w) ~ 1—5<1 - 3—5w2),
where S(w) = [¢[arctarty)/y]dy. In the case ofw<1 these
functions are given by

1 4 16
AV (w) ~ 4(1 - sz), AD(w) ~ - ng, C2(w) ~ O(w*), CP(w)~- 1—75w2.
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