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A mechanism of excitation of the large-scale inertial waves in a rotating inhomogeneous turbulence due to
an excitation of a large-scale instability is found. This instability is caused by a combined effect of the
inhomogeneity of the turbulence and the uniform mean rotation. The source of the large-scale instability is the
energy of the small-scale turbulence. We determined the range of parameters at which the large-scale instability
occurs, the growth rate of the instability, and the frequency of the generated large-scale inertial waves.
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I. INTRODUCTION

The study of rotating flows is of interest for a wide range
of problems, ranging from engineeringse.g., turbomachin-
eryd and astrophysicssgalactic and accretion disksd to geo-
physicssoceans, the atmosphere of the Earth, gaseous plan-
etsd and weather predictionsssee, e.g.,f1–3gd. Inertial waves
arise in rotating flows and are observed in the atmosphere of
the Earth and in laboratory rotating flows. In turbulent rotat-
ing flows inertial waves are damped due to a high turbulent
viscosity. Thus, excitation of coherent and undamped inertial
waves by turbulence seems not to be effective. However,
large-scale inertial waves are observed in turbulent rotating
flows. A mechanism of excitation of the large-scale coherent
inertial waves in turbulence is not well understood.

Inertial waves are related to generation of large-scale vor-
ticity. Generation of a large-scale vorticity in a helical turbu-
lence due to hydrodynamicala effect was suggested in

f4–8g. This effect is associated with theaW̃ term in the

equation for the mean vorticity, whereW̃ are the perturba-
tions of the mean vorticity anda is determined by the hy-
drodynamical helicity of turbulent flow. A nonzero hydrody-
namical helicity is caused, e.g., by a combined effect of an
uniform rotation and inhomogeneity of turbulencesor fluid
density stratificationd.

Formation of large-scale vortices in a turbulent rotating
flows was studied experimentally and in numerical simula-
tions ssee, e.g.,f9–15gd. Formation of large-scale coherent
structuresse.g., large-scale cyclonic and anticyclonic vorti-
cesd in a small-scale turbulence is one of the characteristic
features of rotating turbulencessee, e.g.,f11gd. A number of
mechanisms have been proposed to describe generation of a
mean flow by a small-scale rotating turbulence—e.g., the
effect of angular momentum mixingf16g and vorticity expul-
sion f17g. The first experimental demonstration wherein it

was shown that the divergence of the Reynolds stresses can
generate an organized mean circulation was described in
f11g.

There is a certain similarity between mean rotation and a
mean velocity shear. Generation of a mean vorticity in a
nonhelical homogeneous incompressible turbulent flow with
an imposed mean velocity shear due to an excitation of a
large-scale instability was studied inf18g. This instability is
caused by a combined effect of the large-scale shear motions
s“skew-induced” deflection of equilibrium mean vorticityd
and “Reynolds stress-induced” generation of perturbations of
the mean vorticity. This instability and the dynamics of the
mean vorticity are associated with Prandtl’s turbulent sec-
ondary flowsssee, e.g.,f19–22gd. However, a turbulence with
an imposed mean velocity shear and a uniformly rotating
turbulence are different. In particular, the mean vorticity is
generated by a homogeneous nonhelical sheared turbulence
f18g. On the other hand, the mean vorticity cannot be gener-
ated by a homogeneous uniformly rotating nonhelical turbu-
lence ssee belowd. The main difference between these two
flows is that the mean velocity shear produces work in a
turbulent flow, while a uniform rotation does not produce
work in a homogeneous turbulent flow.

There are other interesting problems related with the in-
ertial waves including, e.g., the effect of inertial waves on
the onset of convection and on the turbulence dynamics. In
particular, the onset of convection in the form of inertial
waves in a rotating fluid sphere were studied inf23g. On the
other hand, the modification of turbulence dynamics by ro-
tation is due to the presence of small-scale inertial waves in
rotating flowsssee, e.g.,f2,24–27gd.

The main goal of this paper is to study large-scale struc-
tures formed in a rotating inhomogeneous turbulence. In par-
ticular, we investigate the excitation of large-scale inertial
waves. These structures are associated with a generation of a
large-scale vorticity due to the excitation of the large-scale
instability in an uniformly rotating inhomogeneous turbu-
lence. The excitation of the mean vorticity in this system
requires an inhomogeneity of turbulence.

This paper is organized as follows. In Sec. II we formu-
lated the governing equations, the assumptions, and the pro-
cedure of the derivation. In Sec. III the effective force was
determined, which allowed us to derive the mean-field equa-
tions and to study the excitation of large-scale inertial waves
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in Sec. IV. The large-scale instability was investigated in
Sec. IV analytically for a weakly inhomogeneous turbulence
and numerically for an arbitrary inhomogeneous turbulence.
Conclusions and applications of the obtained results are dis-
cussed in Sec. V. In Appendixes A–C a detailed derivation of
the effective force is performed.

II. GOVERNING EQUATIONS

The system of equations for the evolution of the velocity
v and vorticityW ; = 3v reads

F ]

]t
+ v · = Gv = −

=P

r
+ 2v 3 V + nDv + Fst, s1d

]W

]t
= = 3 sv 3 W + 2v 3 V − n = 3 Wd, s2d

where v is the fluid velocity with = ·v=0, P is the fluid
pressure,Fst is an external stirring force with a zero mean
value, V is a constant angular velocity, andn is the kine-
matic viscosity. Equations2d follows from the Navier-Stokes
equations1d. We use a mean-field approach whereby the ve-
locity, pressure, and vorticity are separated into the mean and

fluctuating parts,v=Ū+u, P= P̄+p, andW =W̄ +w, and the

fluctuating parts have zero mean values,Ū=kvl, P̄=kPl, and

W̄ =kWl. Averaging Eqs.s1d and s2d over an ensemble of

fluctuations we obtain the equations for the mean velocityŪ
and mean vorticityW̄:

F ]

]t
+ Ū · = GŪ = −

= P̄

r
+ 2Ū 3 V +F + nDŪ, s3d

]W̄

]t
= = 3 sŪ 3 W̄ + 2Ū 3 V + ku 3 wl − n = 3 W̄d,

s4d

whereFi =−¹ jkuiujl. Note that the effect of turbulence on the
mean vorticity is determined by the Reynolds stresseskuiujl
because

ku 3 wli = − ¹ jkuiujl +
1

2
¹iku2l. s5d

Consider a steady-state solution of Eqs.s3d ands4d in the

form Ūssd=0 andW̄ ssd=0. In order to study a stability of this
equilibrium we consider perturbations of the mean velocity

Ũ and the mean vorticityW̃. The linearized equations for the
small perturbations of the mean velocity and the mean vor-
ticity are given by

]Ũ

]t
= −

= P̃

r
+ 2Ũ 3 V + F̃sŨd + nDŨ, s6d

]W̃

]t
= = 3 s2Ũ 3 V + F̃sŨd − n = 3 W̃d, s7d

whereF̃sŨd=−¹ jsf ij − f ij
s0dd is the effective force,f ij =kuiujl,

and f ij
s0d is the second moment of the velocity field in a back-

ground turbulenceswith a zero gradient of the mean veloc-

ityd. Thus, the mean fieldsŨ and W̃ represent deviations

from the equilibrium solutionŪssd=0 andW̄ ssd=0. This equi-
librium solution is a steady-state solution of Eqs.s3d ands4d.
Note that the characteristic times and spatial scales of small-
scale fluctuations of velocity and vorticityu andw are much

smaller than that of the mean fieldsŨ andW̃.
In order to obtain a closed system of equations in the next

section we derived an equation for the effective forceF̃.

III. EFFECTIVE FORCE

In this section we derive an equation for the effective

force F̃. The mean velocity gradients can affect turbulence.
The reason is that additional essentially nonisotropic velocity
fluctuations can be generated by tangling of the mean-
velocity gradients with the Kolmogorov-type turbulence. The
source of energy of this “tangling turbulence” is the energy
of the Kolmogorov turbulence. The tangling turbulence was
introduced by Wheelonf28g and Batcheloret al. f29g for a
passive scalar and by Golitsynf30g and Moffatt f31g for a
passive vectorsmagnetic fieldd. Anisotropic fluctuations of a
passive scalarse.g., the number density of particles or tem-
peratured are generated by tangling of gradients of the mean
passive scalar field with a random velocity field. Similarly,
anisotropic magnetic fluctuations are excited by tangling of
the mean magnetic field with the velocity fluctuations. The
Reynolds stress in a turbulent flow with mean velocity gra-
dients is another example of a tangling turbulence. Indeed,
they are strongly anisotropic in the presence of mean veloc-
ity gradients and have a steeper spectrums~k−7/3d than a
Kolmogorov turbulencessee, e.g.,f32–36gd. The anisotropic
velocity fluctuations of tangling turbulence were studied first
by Lumley f32g.

To derive an equation for the effective forceF̃ we use
equation for fluctuationsust ,r d which is obtained by sub-
tracting Eq.s3d for the mean field from Eq.s1d for the total
field:

]u

]t
= − sŪ · = du − su · = dŪ −

=p

r
+ 2u 3 V + Fst + UN,

s8d

where

UN = ksu · = dul − su · = du + nDu. s9d

We consider a turbulent flow with large Reynolds numbers
sRe=l0u0/n@1d, whereu0 is the characteristic velocity in
the maximum scalel0 of turbulent motions. We assume that
there is a separation of scales; i.e., the maximum scale of
turbulent motionsl0 is much smaller than the characteristic
scale of inhomogeneities of the mean fields. Using Eq.s8d

ELPERIN et al. PHYSICAL REVIEW E 71, 036302s2005d

036302-2



we derived an equation for the second moment of the turbu-
lent velocity field f ijsk ,Rd;ekuisk +K /2dujs−k
+K /2dlexpsiK ·RddK :

]f ijsk,Rd
]t

= Gi jmnfmn+ Fij + f ij
sNd s10d

ssee Appendix Ad, whereGi jmn= I ijmnsŨd+NijmnsVd,

I ijmnsŨd = F2kiqdmpd jn + 2kjqdimdpn − dimd jqdnp − diqd jndmp

+ dimd jnkq
]

]kp
G¹pŨq, s11d

NijmnsVd = 2Vqkpqs«impdnj + « jmpdnid, s12d

andR andK correspond to the large scales, andr andk to
the small scalesssee Appendix Ad, di j is the Kronecker ten-

sor, kij =kikj /k
2, and ==] /]R, Fijsk ,Rd=kF̃isk ,Rduj

3s−k ,Rdl+kuisk ,RdF̃js−k ,Rdl, F̃sk ,R ,td=−k 3 sk
3Fstsk ,Rdd /k2, and f ij

sNdsk ,Rd are the terms which are re-
lated with the third moments appearing due to the nonlinear
terms. The third moments termsf ij

sNd are defined as

f ij
sNdsk,Rd = kPinsk1dÛn

Nsk1dujsk2dl + kuisk1dPjnsk2dÛn
Nsk2dl,

whereÛn
Nskd is the Fourier transform ofUN determined by

Eq. s9d, k1=k +K /2, k2=−k +K /2, andPijskd=di j −kij .
Equations10d is written in a frame moving with a local

velocity Ũ of the mean flow. In Eq.s10d for the second
moments of the turbulent velocity field we neglected small
terms,Os=2d, where the terms with¹,OsL−1d contain the
large-scale spatial derivatives. These terms are of the order
of sl0/Ld2, where the maximum scale of turbulent motionsl0
is much smaller than the vertical size of the turbulent region
L.

Equations10d for the background turbulenceswith a zero

gradient of the mean fluid velocity¹iŨ j =0 andV=0d reads

]f ij
s0dsk,Rd

]t
= Fij + f ij

sN,0d, s13d

where the superscripts0d corresponds to the background tur-
bulence, and we assumed that the tensorFijsk ,Rd, which is
determined by a stirring force, is independent of the mean-
velocity gradients and of a constant mean angular velocity.
The equation for the deviationsf ij − f ij

s0d from the background
turbulence is given by

]sf ij − f ij
s0dd

]t
= Gi jmnfmn+ f ij

sNd − f ij
sN,0d. s14d

Equations14d for the deviations of the second moments
f ij − f ij

s0d in k space contains the deviations of the third mo-
mentsf ij

sNd− f ij
sN,0d and a problem of closing the equations for

the higher moments arises. Various approximate methods
have been proposed for the solution of problems of this type
ssee, e.g.,f37–39gd. The simplest procedure is thet approxi-
mation which was widely used for study of different prob-

lems of turbulent transportssee, e.g.,f37,40–43gd. One of the
simplest procedures, which allows us to express the devia-
tions of the terms with the third momentsf ij

sNd− f ij
sN,0d in k

space in terms of that for the second momentsf ij − f ij
s0d, reads

f ij
sNd − f ij

sN,0d = −
f ij − f ij

s0d

tskd
, s15d

wheretskd is the scale-dependent correlation time of the tur-
bulent velocity field. Here we assumed that the timetskd is
independent of the mean velocity gradientssfor a weak
mean-velocity sheard. We considered also the case of a slow
rotation rate. In this case a modification of the correlation
time of fully developed turbulence by slow rotation is small.
This allows us to suggest that Eq.s15d is valid for a slow
rotation rate.

The t approximation is different from eddy-damped qua-
sinormal MarkoviansEDQNMd approximation. A principal
difference between these two approaches is as followsssee
f37,39gd. The EDQNM closures do not relax to the equilib-
rium, and this procedure does not describe properly the mo-
tions in the equilibrium state. In the EDQNM approximation,
there is no dynamically determined relaxation time, and no
slightly perturbed steady state can be approachedf37g. In the
t approximation, the relaxation time for small departures
from equilibrium is determined by the random motions in the
equilibrium state, but not by the departure from equilibrium
f37g. The analysis performed inf37g showed that thet ap-
proximation describes the relaxation to the equilibrium state
sthe background turbulenced more accurately than the
EDQNM approach.

Note that we applied thet approximations15d only to
study the deviations from the background turbulence which
are caused by the spatial derivatives of the mean velocity and
a uniform rotation. The background turbulence is assumed to
be known. Here we use the following model for the back-
ground isotropic and weakly inhomogeneous turbulence:

f ij
s0dsk,Rd =

Eskd
8pk2FPijskd +

i

2k2ski¹ j − kj¹idGku2ls0d

s16d

ssee, e.g.,f44gd, wherePijskd=di j −kij , di j is the Kronecker
tensor, and kij =kikj /k

2, tskd=2t0t̄skd, Eskd=−dt̄skd /dk,
t̄skd=sk/k0d1−q, 1,q,3 is the exponent of the kinetic en-
ergy spectrumse.g.,q=5/3 for Kolmogorov spectrumd, and
k0=1/l0.

The mean-velocity gradient¹iŨ causes generation of an-
isotropic velocity fluctuationsstangling turbulenced. Equa-
tions s14d–s16d allow us to determine the second moment
f ijsRd=ef ijsk ,Rddk:

f ijsRd = f ij
s0dsRd − nT

s0dMij −
1

6
l0
2VSij s17d

ssee Appendix Bd, wherenT
s0d=t0ku2ls0d /6 and the tensorsMij

andSij are determined in Appendix B. The definition of the
function nT

s0d yields ku2ls0dsRd=6nT
s0dsRd /t0. Since we as-

sumed thatt0 is independent ofR, the spatial profile of the
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function nT
s0d fe.g., given by Eq.s26d in Sec. IV Bg deter-

mines the spatial profile ofku2ls0d. Equations17d allows us to

determine the effective forceF̃i =−¹ jff ijsRd− f ij
s0dsRdg:

F̃i = nT
s0dsMijL j + ¹ jMijd +

1

6
l0
2VsSijL j + ¹ jSijd, s18d

whereL=s=l0
2d / l0

2=s=nT
s0dd /nT

s0d.
Note that whenL=const and the velocity field is incom-

pressible, the effective forceF̃ does not have the term

~aW̃, where a describes the hydrodynamica effect. The
hydrodynamica effect was introduced in the equation for the
mean vorticityssee, e.g.,f4,6,7gd, similarly to thea effect in
the equation for the evolution of the mean magnetic field

ssee, e.g.,f45gd. The reason for the absence of theaW̃ term

in F̃ is as follows. Let us suggest the opposite—i.e., that

F̃~aW̃ =a= 3 Ũ. Since the effective forceF̃i =−¹ jff ijsRd
− f ij

s0dsRdg, we obtain

f ijsRd − f ij
s0dsRd ~ − a«i jkŨk. s19d

Here we used the identityW̃i =«i jk¹ jŨk and we took into
account that whenL=const, the hydrodynamica is constant.
Note also that in our paper we considered incompressible
velocity field. The conditions19d is in contradiction with the
Galilean invariance, because the Reynolds stresses in the
considered case may depend on the gradient of the mean-
velocity field rather than on the mean velocity itself. WhenL

is not constant, the effective forceF̃ can have the term

~aW̃. However, this effect is not in the scope of our paper
se.g., this case cannot be described in the framework of the
gradient approximationd.

IV. LARGE-SCALE INSTABILITY IN AN
INHOMOGENEOUS TURBULENCE

For simplicity we consider the case when the turbulence
is inhomogeneous along the rotation axis—i.e.,L=Lez, V

=Vez. After calculatingf=3 s=3 Ũdgz from Eq. s6d andW̃z

from Eq. s7d we arrive at the following equations written in
nondimensional form:

D
]Ũz

]t
= − fĜ − bUD'¹zgW̃z + fnTD2 + nTLD¹z + nULD'¹z

+ hUD'¹z
2gŨz, s20d

]W̃z

]t
= sĜ − bLD'dŨz + fnT¹z

2 + nTL¹z + hWD'gW̃z,

s21d

whereD=D'+¹z
2, ¹z=] /]z,

Ĝ = 2a*¹z + bfL¹z
2 + D¹zg,

bsV,zd = nT
s0dszdsv/8dfD5svd/2 − D6svdg,

bUsV,zd = nT
s0dszdsv/8dD6svd,

nTsV,zd = nT
s0dszdfD1svd/2 + D2svdg,

nUsV,zd = hUsV,zd + 2nT
s0dszdD2svd,

hUsV,zd = nT
s0dszdD4svd,

hWsV,zd = nT
s0dszdfD1svd/2 − D3svdg.

Here v=8t0V, a* =VL2/nT
* @1, and we used Eq.s18d. The

functionsDksvd are determined in Appendix B.
In Eqs.s20d ands21d we use the following dimensionless

variables: length is measured in units ofL, time in units of
L2/nT

* , the parameterL is measured in the units ofL−1, the
function nT

s0dszd is measured in the units ofnT
* , and the per-

turbations of velocityŨz and vorticity W̃z are measured in
units of U* and U* /L, respectively. The functionsbsVt0d,
bUsVt0d, nTsVt0d, nUsVt0d, hWsVt0d, and hUsVt0d are
shown in Figs. 1 and 2. All these functions shown in Figs. 1
and 2 are normalized by nT

s0dszd—e.g., nTsVt0d
;nTsV ,zd /nT

s0dszd—and similarly for other functions.

FIG. 1. The rotation rate dependence of the functionsbsVt0d
ssolid lined andbUsVt0d sdashed lined.

FIG. 2. The rotation rate dependence of the functionsnTsVt0d
ssolid lined, nUsVt0d sdash-dotted lined, hWsVt0d sdashed lined, and
hUsVt0d sdotted lined.
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A. Weakly inhomogeneous turbulence

Assume that functionsnT
s0dszd andLszd vary slowly withz

in comparison with the variations of the mean velocityŨzszd
and mean vorticityW̃zszd. Let us seek a solution of Eqs.s20d
and s21d in the form ~expsgt− iK ·Rd. Let us first consider

perturbations with the wave numbersK'
2 !Kz

2. Since= ·Ũ
=0, the velocity componentsŨz! uŨ'u. Thus the growth rate
of the inertial waves with frequency

vw = − sgnsbLd
2a*Kz

K
s22d

is given by

gw = ubsVt0dLKzu − nTsVt0dK2, s23d

whereg=gw+ ivw, the wave numberK is measured in the
units of L−1, and g is measured in the units ofnT

* /L2. The
maximum growth rate of the inertial waves,gm
=fbsVt0dLg2/4nTsVt0d, is attained at K=Km

= ubsVt0dLu /2nTsVt0d. For a very small rotation rate—i.e.,
for v;8Vt0!1—the turbulent viscosity nTsVt0d<sq
+3d /5 andbsVt0d<s32/15dVt0, where the parameterq is
the exponent of the kinetic energy spectrum of the back-
ground isotropic and weakly inhomogeneous turbulence
se.g.,q=5/3 for Kolmogorov spectrumd, and this parameter
varies in the range 1,q,3. Note that the inertial waves are
helical; i.e., the large-scale hydrodynamic helicity of the mo-

tions in the inertial waves isŨ ·s=3 Ũd=2uŨ'u2KzÞ0. This
instability is caused by a combined effect of the inhomoge-
neity of the turbulence and the uniform mean rotationfsee
the first term in Eq.s23dg.

Now we consider the opposite case—i.e., the perturba-

tions with the wave numbersK'
2 @Kz

2. Since = ·Ũ=0, the

velocity componentsŨz@ uŨ'u. When K2ubsVdLu /4a* !Kz

!K', the growth rate of perturbations with frequency

vw = sgnsbLd
2a*Kz

K
, s24d

is given by

gw =
1

2
fubsVt0dLuK − fnTsVt0d + hWsVt0dgK2g. s25d

The maximum growth rate of perturbations,gm
=fbsVt0dLg2/8fnTsVt0d+hWsVt0dg, is attained atK=Km

= ubsVt0dLu /2fnTsVt0d+hWsVt0dg. This case corresponds to
a* @b2sVt0d /4nTsVt0d. The large-scale hydrodynamic he-

licity of the flow is Ũ ·s=3 Ũd=4K'uŨzu2 sgnsbdÞ0.

B. Numerical results

In this section we take into account the inhomogeneity of
the functionsnT

s0dszd andLszd. Consider an eigenvalue prob-
lem for a system of Eqs.s20d and s21d. We seek for a solu-
tion of Eqs.s20d ands21d in the form~CszdexpsgtdJ0sK'rd,
where J0sxd is the Bessel function of the first kind. After
substitution of this solution into Eqs.s20d ands21d we obtain

the system of ordinary differential equations which is solved
numerically.

We used the cylindrical geometrysz,r ,fd with the z axis
along the rotation axis and consider the axisymmetric solu-
tion si.e., there are no derivatives with respect to the polar
anglefd. The turbulence is inhomogeneous along the rota-
tion axis. We use the periodic boundary conditions in thez

direction for Eqs. s20d and s21d—i.e., Ũzsz=0,rd=Ũzsz
=L ,rd, Ũz8sz=0,rd=Ũz8sz=L ,rd, Ũz9sz=0,rd=Ũz9sz=L ,rd,
Ũz-sz=0,rd=Ũz-sz=L ,rd, W̃zsz=0,rd=W̃zsz=L ,rd, andW̃z8sz
=0,rd=W̃z8sz=L ,rd, wheref̃8=¹zf̃. We also use the condition

Ũrsz,r =0d=Ũrsz,r =Rd=0, whereR is the radius of the tur-
bulent region.

We have chosen the vertical spatial profile of the function
nT

s0dszd in the form

nT
s0dszd = 1 −CH1 − expF− 2L0

2S z

L
−

1

2
D2GJ ,

C =
1 − nT

sbd

1 − exps− L0
2/2d

, s26d

with two values of the parameternT
sbd=0.1 and 0.3 and two

values of the parameterL0=12 and 30. The vertical profile
of the turbulent viscositynT

s0dszd is shown in Fig. 3. The
maximum of turbulence intensity is located atz=L /2. The
form of the chosen spatial profile of the functionnT

s0dszd is
simple enough and universal. It allows us to vary the size of
the region occupied by turbulencesby changing the param-
eter L0d and the difference in the level of the turbulence
between the center and boundary of the regionsby changing
the parameternT

sbdd; i.e., it allows us to change the inhomo-
geneity of the turbulence. The numerical solution of Eqs.
s20d ands21d was performed also for other spatial profiles of
the functionnT

s0dszd. However, the final results do not depend
strongly on the details in the spatial profile of the function
nT

s0dszd. Note also that the chosen spatial profile of the func-
tion nT

s0dszd can mimic the distribution of turbulence in galac-
tic and accretion discsssee, e.g.,f46gd.

FIG. 3. The vertical profile of the turbulent viscositynT
s0dszd for

L0=30 andnT
sbd=0.1ssolid lined, L0=30 andnT

sbd=0.3sdashed lined,
L0=12 andnT

sbd=0.1 sdash-dotted lined.
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The sufficient condition for the excitation of the instabil-
ity is gw.0. The range of parameterssL / l0,Vt0d for which
the large-scale instability occurs is shown in Fig. 4 for dif-
ferent values of the parametersm, nT

sbdszd, and L0. Here m
=L /Lr, L is the vertical size of the whole region, andLr is a
radius from the center of the structure at which the energyŨr

2

of the radial velocity perturbations is maximum. Note that
the maximum radialshorizontald sizeR of the whole region
is of the order of,4Lr. The decrease of the parameterm
causes increase of the range of the large-scale instability. On
the other hand, the increase of the size of the highly intense
turbulent regionsi.e., decrease of the parameterL0d results in
the increase of the range of the instability.

The rotation rate dependences of the growth rategwtD of
the large-scale instability and the frequencyvwt0 of the gen-
erated waves due to the large-scale instability are shown in
Figs. 5 and 6, wheretD=L2/nT

* . There is a threshold in the
rotation rate for the large-scale instability,V*t0<0.025, and
when V.V* , the instability is excited. The instability
threshold in the parameterL is L.10l0.

Note that the characteristic times,2p /gwd of the growth

of perturbations of the mean fieldsŨ andW̃ is by five orders
of magnitudes larger than the turbulent correlation timet0.
The period of oscillations,T=2p /vw, of inertial waves is at
least 10 times larger than the turbulent correlation timet0.
The minimum value of the period of rotationTR=2p /V is at
least 20 times larger than the turbulent correlation timet0.
All spatial scales: the vertical size of the turbulent region,L,
and the vertical size of the highly intense turbulence
s,L /L0d are much larger than the maximum scale of turbu-
lent motionsl0 se.g.,L /L0 is at least 10 times larger than the
maximum scale of turbulent motionsl0d. This implies that
there is indeed a separation of scales as we assumed in the
derivations. Note also that the range of validity of the ob-
tained results ist0!T for a statistically stationary back-
ground turbulence. In particular, we assumed that the char-
acteristic time of evolution of the second moments is much

smaller than the turbulent correlation time. The asymptotic
formulas s22d–s25d are in agreement with the obtained nu-
merical results.

It must be noted that turbulent flow with an imposed mean
linear velocity shear and uniformly rotating flows are essen-
tially different. In particular, in a turbulent flow with an im-
posed mean linear velocity shear there are no waves similar
to the inertial waves which exist in a uniformly rotating
flows. The reason is that any shear motions have a nonzero

FIG. 4. The range of parameterssL / l0,Vt0d for which the large-
scale instability occurssgw.0d for sad L0=12, nT

sbd=0.1; sbd L0

=30, nT
sbd=0.1; scd L0=30, nT

sbd=0.3; and different values of the
parameterm: m=0.1 sdotted lined, m=0.5 ssolid lined, m=1 sdashed
lined, m=2 sdash-dotted lined.

FIG. 5. The rotation ratesVt0d dependences ofsad the growth
rategwtD of the large-scale instability andsbd the frequencyvwt0

of the generated waves due to the large-scale instability forL0

=12, nT
sbd=0.1, m=0.1, and different values of the parameterL / l0:

L / l0=50 ssolid lined, L / l0=100 sdashed lined, andL / l0=500 sdash-
dotted lined. HeretD=L2/nT

* .

FIG. 6. The rotation ratesVt0d dependences ofsad the growth
rategwtD of the large-scale instability andsbd the frequencyvwt0

of the generated waves due to the large-scale instability forL0

=30, nT
sbd=0.1, m=0.1, and different values of the parameterL / l0:

L / l0=100 ssolid lined, L / l0=500 sdashed lined, and L / l0=1000
sdash-dotted lined.
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symmetric parts]Ûdi j of the gradient of the mean velocity,

wheres]Ûdi j =s¹iŪj +¹ jŪid /2. In addition, the difference be-
tween these two flows is that the mean velocity shear pro-
duces work in a turbulent flow, while a uniform rotation does
not produce work in homogeneous turbulent flow.

V. CONCLUSIONS

We studied formation of large-scale structures in a rotat-
ing inhomogeneous nonhelical turbulence. We found a
mechanism for the excitation of the large-scale inertial waves
which is associated with a generation of a large-scale vortic-
ity due to the excitation of the large-scale instability in a
uniformly rotating inhomogeneous turbulence. It was shown
that the mean vorticity cannot be generated by a homoge-
neous uniformly rotating nonhelical turbulence. The excita-
tion of the mean vorticity in this flow requires also an inho-
mogeneity of turbulence. Therefore, the large-scale
instability is caused by a combined effect of the inhomoge-
neity of the turbulence and the uniform mean rotation. The
source of the large-scale instability is the energy of the
small-scale turbulence. The rotation and inhomogeneity of
turbulence provide a mechanism for transport of energy from
turbulence to large-scale motions. We determined the range
of parameters at which the large-scale instability occurs.

Some of the results obtained in this study—e.g., the ex-
pression for the effective force in a homogeneous
turbulence—are in compliance with the previous studies of
rotating turbulencef49g fsee Appendix B, Eq.sB13dg. It is
plausible to suggest that the results of recent experiments
f50g can be explained by the large-scale instability discussed
in this paper. Direct quantitative comparison of our theoret-
ical predictions with the experimental results reported inf50g
is not feasible. The reason is that turbulent flow in the ex-
perimental setup used inf50g is inhomogeneous in radial and
axial directions, and the radial inhomogeneity is stronger
than the axial one. In our study we investigated the large-
scale instability in the case of the axial inhomogeneity of
turbulence and considered only a simple physical mecha-
nisms to describe the initial stage of mean-vorticity genera-
tion in a rotating inhomogeneous turbulence. However, the
main mechanism of the generation of the secondary flow in
the experimentsf50g is associated with the Reynolds stress-
induced generation of the mean vorticity by a rotating inho-
mogeneous turbulence that was analyzed in our study.
Clearly, the simple model considered in our investigation can
only mimic the flow observed in the experimentsf50g, and
comprehensive theoretical and numerical studies are required
for their quantitative description.
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APPENDIX A: DERIVATION OF Eq. (10)

In order to derive Eq.s10d we use a mean-field approach;
i.e., a correlation function is written as follows:

kuisxdujsydl =E kuisk1dujsk2dlexpfisk1 ·x + k2 ·ydgdk1dk2

=E f ijsk,Rdexpsik · r ddk ,

f ijsk,Rd =E kuisk + K /2dujs− k + K /2dlexpsiK ·RddK

ssee, e.g.,f47,48gd, whereR and K correspond to the large
scales andr andk to the small scales—i.e.,R=sx+yd /2, r
=x−y, K =k1+k2, andk =sk1−k2d /2. This implies that we
assumed that there exists a separation of scales; i.e., the
maximum scale of turbulent motionsl0 is much smaller then
the characteristic scale of inhomogeneities of the mean
fields.

Now we calculate

]f ijsk1,k2d
]t

;KPinsk1d
]unsk1d

]t
ujsk2dL

+Kuisk1dPjnsk2d
]unsk2d

]t
L , sA1d

where we multiplied equation of motions8d rewritten in k
space byPijskd=di j −kij in order to exclude the pressure term
from the equation of motion,di j is the Kronecker tensor, and
kij =kikj /k

2. This yields the equation forf ijsk ,Rd fsee Eq.
s10dg. For the derivation of Eq.s10d we used the equation

iki E f ijSk −
1

2
Q,K − QDŨpsQdexpsiK ·RddKdQ

= −
1

2
Ũp¹i f i j +

1

2
f ij¹iŨp −

i

4
s¹sŨpdS¹i

]f ij

]ks
D

+
i

4
S ]f ij

]ks
Ds¹s¹iŨpd. sA2d

To derive Eq.sA2d we multiply the equation= ·u=0, written

in k space foruisk1−Qd, by ujsk2dŨpsQdexpsiK ·Rd, and in-
tegrate overK and Q and average over the ensemble of
velocity fluctuations. Herek1=k +K /2 and k2=−k +K /2.
This yields

E iSki +
1

2
Ki − QiDKuiSk +

1

2
K − QDujS− k +

1

2
KDL

3 ŨpsQdexpsiK ·RddKdQ = 0. sA3d

Next, we introduce new variables:k̃1=k +K /2−Q, k̃2=−k
+K /2, k̃ =sk̃1− k̃2d /2=k −Q /2, andK̃ = k̃1+ k̃2=K −Q. This
allows us to rewrite Eq.sA3d in the form
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E iSki +
1

2
Ki − QiD f ijSk −

1

2
Q,K − QDŨpsQd

3 expsiK ·RddKdQ = 0. sA4d

SinceuQu! uk u, we can use the Taylor series expansion

f ijsk − Q/2,K − Qd . f ijsk,K − Qd −
1

2

]f ijsk,K − Qd
]ks

Qs

+ OsQ2d. sA5d

We also use the following identities:

ff ijsk,RdŨpsRdgK =E f ijsk,K − QdŨpsQddQ,

¹pff ijsk,RdŨpsRdg =E iKpff ijsk,RdŨpsRdgK

3 expsiK ·RddK , sA6d

where ff ijsk ,RdŨpsRdgK denotes a Fourier transformation.
Therefore, Eqs.sA4d–sA6d yield Eq. sA2d.

APPENDIX B: THE REYNOLDS STRESSES

In this appendix we derive equation for the Reynolds
stresses using Eq.s14d. We assume that the characteristic
time of variation of the second momentf ijsk ,Rd is substan-
tially larger than the correlation timetskd for all turbulence
scales. Thus in a steady state Eq.s14d reads

fL̂sVd − tskdÎsŨdgs f̂ − f̂ s0dd = tskdfN̂sVd + ÎsŨdg f̂ s0d,

sB1d

where we used Eq.s15d. Hereafter we use the following no-

tation: f̂ ; f ijsk ,Rd, f̂ sNd; f ij
sNdsk ,Rd, f̂ s0d; f ij

s0dsk ,Rd, ÎsŨd f̂

; I ijmnsŨdfmnsk ,Rd and N̂sVd f̂ ;NijmnsVdfmnsk ,Rd, and

L̂sVd;LijmnsVd=dimd jn−tskdNijmnsVd. Multiplying Eq.

sB1d by the inverse operatorL̂−1sVd yields

fÊ − tskdL̂−1sVdÎsŨdgs f̂ − f̂ s0dd = − fÊ − L̂−1sVd

− tskdL̂−1sVdÎsŨdg f̂ s0d,

sB2d

whereÊ;dimd jn, and we used an identity

Ê − L̂−1sVd = − tskdL̂−1sVdN̂sVd.

The latter identity follows from the definitionL̂−1sVdL̂sVd
=Ê. The inverse operatorL̂−1sVd is given by

L̂−1sVd ; Lijmn
−1 sVd =

1

2
fB1dimd jn + B2kijmn

+ B3s«ipmd jn + « jpndimdk̂p + B4sdimkjn + d jnkimd

+ B5«ipm« jqnkpq + B6s«ipmkjpn + « jpnkipmdg, sB3d

where B1=1+xs2cd, B2=B1+2−4xscd, B3=2cxs2cd, B4

=2xscd−B1, B5=2−B1, B6=2cfxscd−xs2cdg, xsxd=1/s1
+x2d, andc=2tskdsk ·Vd /k.

Multiplying Eq. sB2d by the operatorÊ+tskdL̂−1sVdÎsŨd
yields the second momentf̂ ; f ijsk ,Rd:

f̂ < fL̂−1sVd + tskdL̂−1sVdÎsŨdL̂−1sVdg f̂ s0d, sB4d

where we neglected terms which are of the order of

Osu¹ Ũu2d. SinceLijmn
−1 sVdPmnskd=Pijskd, Eq. sB4d reads

f̂ < f̂ s0d + tskdL̂−1sVdÎsŨd f̂ s0d. sB5d

The first term in Eq.sB5d describes the background turbu-
lence. The second term in Eq.sB5d determines effects of
both rotation and mean gradients of the velocity perturba-
tions on the turbulence. The integration ink space yields the

second momentf̃ i jsRd=e f̃ i jsk ,Rddk which is determined by

Eq. s17d, where we used the notationf̃ ; f̃ i j = f ij − f ij
s0d, and the

tensorsMij andSij are given by

Mij = D1svds]Ũdi j + D2svdQij + D3svdTij + D4svdsv̂ · = d

3sv̂ · Ũdvi j , sB6d

Sij = D5svdKij + D6svdRij , sB7d

where

Qij = sv̂i¹ j + v̂ j¹idsv̂ · Ũd + sv̂ · = dsv̂iŨj + v̂ jŨid,

sB8d

Tij = sv̂ 3 = disv̂ 3 Ũd j + sv̂ 3 = d jsv̂ 3 Ũdi , sB9d

Kij = v̂nf«imns]Ũdmj + « jmns]Ũdmig, sB10d

Rij = fv̂isv̂ 3 = d j + v̂ jsv̂ 3 = digsv̂ · Ũd

+ sv̂ · = dfv̂isv̂ 3 Ũd j + v̂ jsv̂ 3 Ũdig, sB11d

s]Ũdi j =s¹iŨj +¹ jŨid /2, vi j =v̂iv̂ j, v̂i =Vi /V, and

D1svd = h2fA1
s1dsvd − A1

s1ds0d + sq + 2dC1
s1ds0d + C1

s1dsvdg

+ A2
s1dsvdj/4,

D2svd = f2C3
s1dsvd − A2

s1dsvdg/8,

D3svd = − s1/8dA2
s1dsvd, D4svd = s1/4dC2

s1dsvd,

D5svd = 2f4C1
s2dsvd + C2

s2dsvd + 7C3
s2dsvdg,

D6svd = C2
s2dsvd + 2C3

s2dsvd,

v=8t0V. The functionsAm
sndsvd andCm

sndsvd are determined

in Appendix C. Equations18d for the effective forceF̃=

−¹ j f̃ i jsRd can be rewritten in the form
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F̃i = F̃i
sHd + SnT

s0dMij +
1

6
l0
2VSijDL j , sB12d

where nT
s0d=t0ku2ls0d /6=l0

2/6t0, L=s=l0
2d / l0

2=s=nT
s0dd /nT

s0d,

and the effective forceF̃i
sHd in a homogeneous turbulence

reads

F̃i
sHd = nT

s0dHF1

2
D1 − D3GDŨi + D4v̂isv̂ · = d2sv̂ · Ũd

+ sD2 + D3dfsv̂ · = d2Ũi + v̂iDsv̂ · ŨdgJ
+

1

6
l0
2VFD6sv̂ · = dfsv̂ 3 = disv̂ · Ũd − sv̂ ·W̃dvi

+ sv̂ · = dsv̂ 3 Ũdig −
1

2
D5Dsv̂ 3 ŨdiG

+
1

12
l0
2VD5¹isv̂ ·W̃d + nT

s0dsD2 − D3d¹isv̂ · = d

3sv̂ · Ũd, sB13d

where we used the identity

«i jk«lmn = dild jmdkn + dind jldkm+ dimd jndkl − dind jmdkl

− dild jndkm− dimd jldkn.

Equation sB13d for the effective forceF̃i
sHd in a homoge-

neous turbulence coincides in the form with that obtained in
f49g using symmetry arguments. However, the symmetry ar-
guments cannot allow to determine the coefficients in Eq.
sB13d.

APPENDIX C: THE IDENTITIES USED FOR THE
INTEGRATION IN k SPACE

To integrate over the angles ink space we used the fol-
lowing identities:

J̄i jsad =E kij sinu

1 + a cos2 u
dudw = Ā1di j + Ā2vi j , sC1d

J̄i jmnsad =E kijmn sinu

1 + a cos2 u
dudw = C̄1sdi jdmn+ dimd jn + dind jmd

+ C̄2vi jmn + C̄3sdi jvmn+ dimv jn + dinv jm + d jmvin

+ d jnvim + dmnvi jd, sC2d

H̄ijmnsad =E kijmn sinu

s1 + a cos2 ud2dudw

= − S ]

]b
E kijmn sinu

b + a cos2 u
dudwD

b=1

= J̄i jmnsad + a
]

]a
J̄ijmnsad, sC3d

wherevi j =v̂iv̂ j, vi jmn=vi jvmn, Ā1=5C̄1+C̄3, Ā2=C̄2+7C̄3,
and

Ā1sad =
2p

a
Fsa + 1d

arctansÎad
Îa

− 1G ,

Ā2sad = −
2p

a
Fsa + 3d

arctansÎad
Îa

− 3G ,

C̄1sad =
p

2a2Fsa + 1d2arctansÎad
Îa

−
5a

3
− 1G ,

C̄2sad =
p

2a2Fs3a2 + 30a + 35d
arctansÎad

Îa
−

55a

3
− 35G ,

C̄3sad = −
p

2a2Fsa2 + 6a + 5d
arctansÎad

Îa
−

13a

3
− 5G .

In the case ofa!1 these functions are given by

Ā1sad , s4p/3df1 − s1/5dag, Ā2sad , − s8p/15da,

C̄1sad , s4p/15df1 − s1/7dag, C̄2sad , s32p/315da2,

C̄3sad , − s8p/105da.

In the case ofa@1 these functions are given by

Ā1sad , p2/Îa, Ā2sad , − p2/Îa,

C̄1sad , p2/4Îa − 4p/3a, C̄2sad , 3p2/4Îa,

C̄3sad , − p2/4Îa + 8p/3a.

Now we calculate the functions

Ak
spdsvd = s6/pvp+1dE

0

v

ypĀksy2ddy,

Ck
spdsvd = s6/pvp+1dE

0

v

ypC̄ksy2ddy.

The integration yields

A1
s1dsvd = 12Farctansvd

v
S1 −

1

v2D +
1

v2f1 − lns1 + v2dgG ,

A2
s1dsvd = − 12Farctansvd

v
S1 −

3

v2D +
1

v2f3 − 2 lns1 + v2dgG ,

C1
s1dsvd =

arctansvd
v

S3 −
6

v2 −
1

v4D
+

1

v2S17

3
+

1

v2 − 4 lns1 + v2dD ,

A1
s2dsvd = 6Farctansvd

v
S1 +

1

v2D −
3

v2 +
2

v3SsvdG ,
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A2
s2dsvd = − 6Farctansvd

v
S1 +

1

v2D −
7

v2 +
6

v3SsvdG ,

C1
s2dsvd = s3/2dFarctansvd

v
S1 −

1

v4D −
13

3v2 +
1

v4 +
4

v3SsvdG ,

C2
spdsvd = A2

spdsvd − 7A1
spdsvd + 35C1

spdsvd,

C3
spdsvd = A1

spdsvd − 5C1
spdsvd,

where Ssvd=e0
vfarctansyd /ygdy. In the case ofv!1 these

functions are given by

A1
s1dsvd , 4S1 −

1

10
v2D, A2

s1dsvd , −
4

5
v2,

A1
s2dsvd ,

8

3
S1 −

3

25
v2D, A2

s2dsvd , −
16

25
v2,

C1
s1dsvd ,

4

5
S1 −

1

14
v2D, C2

s1dsvd , Osv4d,

C3
s1dsvd , −

4

35
v2, C1

s2dsvd ,
8

15
S1 −

3

35
v2D ,

C2
s2dsvd , Osv4d, C3

s2dsvd , −
16

175
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